MacroSAN MS 系列存储设备 性能统计特性 图形界面用户手册

文档版本: V2.08

杭州宏杉科技股份有限公司

www.macrosan.com

400-650-5527

声明

Copyright © 2022 杭州宏杉科技股份有限公司及其许可者版权所有,保留一切权利。

未经杭州宏杉科技股份有限公司书面许可,任何单位和个人不得擅自摘抄本手册的内容,且不得以任何形式传播本手册。

本手册仅作为操作参考,由于软件版本升级或其他原因,本手册的内容可能滞后于最新的软件版本,杭州宏杉科技股份有限公司保留在没有任何通知或提示的情况下对本手册的内容进行修改的权利。

商标信息

MacroSAN、ODSP、ODSP Scope、宏杉均为杭州宏杉科技股份有限公司的商标。对于本手册中出现的其他公司的商标、产品标识及商品名称,由各自权利人拥有。

目录

MacroSAN MS 系列存储设备 性能统计特性	1-1
图形界面用户手册	1-1
声明	1-2
商标信息	1-3
目录	1-4
图目录	1-6
表目录	1-7
文档结构	1-8
第一部分:概述	
1前言	
1.1 读者对象	
1.2 资料指南	
1.3 资料约定	1-10
1.3.1 资料描述约定	
1.3.2 其他约定	1-10
1.4 资料获取方式	1-10
1.5 资料意见反馈方式	1-11
2 MS 系列存储设备概述	2-11
2.1 MS 系列存储设备简介	2-11
2.2 MS 系列存储设备典型组网介绍	2-11
3 ODSP Scope+控制台	3-12
3.1 ODSP Scope+简介	3-12
3.2 运行 ODSP Scope+	3-13
3.3 ODSP Scope+界面组成	3-14
3.3.1 界面概述	3-14
3.3.2 导航树	3-15
3.3.3 导航栏	
3.3.4 信息显示区	3-16
3.3.5 扩展区	3-17
3.3.6 版权显示区	3-17
第二部分:性能统计特性	3-18
4 性能统计特性简介	4-18
4.1 性能统计简介	4-18
4.2 实时性能统计说明	4-18
4.3 历史性能数据说明	4-18

4.4 性能预测说明		4-18
5 配置性能统计		5-18
5.1 配置性能统计前准	注备	5-18
5.1.1 激活性能统	充计 License	5-18
5.1.2 启用/禁用原	历史性能统计(可选)	5-18
5.2 管理实时性能统计	t	5-20
5.2.1 查看实时性	挂能统计	5-20
5.2.2 添加实时性	挂能统计	5-20
5.2.3 设置采样间	可隔	5-21
5.3 管理历史性能数据	居	5-22
5.3.1 查看历史性	生能数据	5-22
5.3.2 导出历史性	生能数据	5-23
5.3.3 删除历史性	生能数据	5-23
5.3.4 清空历史性	生能数据	5-23
5.3.5 设置自动性	挂能统计	5-24
5.4 管理性能预测		5-25
5.4.1 启用性能预	页测	5-25
5.4.2 启用性能模	莫拟	5-25
5.5 管理功耗		5-26
5.5.1 查看支持查	至看功耗的 DSU	5-26
5.5.2 查看设备以	b耗	5-26
附录 A. 设备默认配		5-28
附录 B. 术语		5-29
附录 C. 缩略语		5-36

图目录

图 2-1 MS 系列存储设备典型组网	2-12
图 3-1 证书异常提示界面示例	3-13
图 3-2 ODSP Scope+登录界面	3-14
图 3-3 ODSP Scope+首页	3-14
图 3-4 ODSP Scope+典型界面示例	3-15
图 3-5 ODSP Scope+导航树示例	3-15
图 3-6 ODSP Scope+导航栏示例	3-16
图 3-7 ODSP Scope+关注事项示例	3-16
图 3-8 ODSP Scope+告警项示例	3-16
图 3-9 ODSP Scope+信息显示区示例	3-17
图 5-1 启用历史性能统计向导界面(一)	5-19
图 5-2 启用历史性能统计向导界面(二)	5-20
图 5-3 添加实时性能统计界面	5-21
图 5-4 设置采样间隔界面	5-22
图 5-5 选择查看的统计对象界面	5-22
图 5-6 选择导出的统计对象界面	5-23
图 5-7 清空历史性能数据界面	5-24
图 5-8 设置自动性能统计界面	5-24
图 5-9 性能预测界面	5-25
图 5-10 性能模拟界面	5-26
图 5-11 选择时间段界面	5-27

表目录

表 1-1	用户手册清单	.1-9
表 5-1	实时统计参数说明	5-21
表 5-2	设备默认配置	5-28

文档结构

	章节	简述	主要内容
概述 MS 系列存储设备概述 介绍 MS 系列存储设备 能和典型组网,便于您设备。 ODSP Scope+控制会	前言	介绍资料相关的信息,便于您使 用相关文档。	读者对象资料指南资料约定资料获取方式资料意见反馈方式
	MS 系列存储设备概述	介绍MS系列存储设备的基本功能和典型组网,便于您简单了解设备。	MS 系列存储设备简介 MS 系列存储设备典型组网介绍
	介绍 ODSP Scope+控制台,便 于您熟悉管理界面的使用。	ODSP Scope+简介运行 ODSP Scope+ODSP Scope+界面组成	
性能统计特 —性	性能统计特性简介	介绍性能统计相关内容。	性能统计简介实时性能统计说明历史性能数据说明性能预测说明
	配置性能统计	介绍如何配置性能统计。	配置性能统计前准备管理实时性能统计管理历史性能数据管理性能预测管理功耗
	设备默认配置	简要介绍设备的默认配置。	设备默认配置
附录	术语	简要介绍文档中出现的术语。	术语
	缩略语	简要介绍文档中出现的缩略语。	缩略语

第一部分: 概述

1 前言

1.1 读者对象

图形界面用户手册用于指导 MacroSAN MS 系列存储设备的配置、管理和维护等操作,适用于 MacroSAN 员工、合作伙伴、存储架构师、系统管理员、维护人员,要求读者熟悉存储系统相关基础知识。

1.2 资料指南

资料指南包含《MacroSAN MS 系列存储设备图形界面用户手册》所有的文档列表,用于指导用户根据需求选择对应的文档。

表1-1 用户手册清单

文档名称	文档内容
《MacroSAN MS 系列存储设备 基础配置 图形界面用户手册》	本文档介绍了 MacroSAN MS 系列存储设备基础配置、管理和维护方法。
《MacroSAN MS 系列存储设备 快照特性 图 形界面用户手册》	本文档介绍了 MacroSAN MS 系列存储设备快照特性的配置方法。
《MacroSAN MS 系列存储设备 复制特性 图 形界面用户手册》	本文档介绍了 MacroSAN MS 系列存储设备复制特性的配置方法。
《MacroSAN MS 系列存储设备 HotCache 特性 图形界面用户手册》	本文档介绍了 MacroSAN MS 系列存储设备 HotCache 特性的配置方法。
《MacroSAN MS 系列存储设备 性能统计特性 图形界面用户手册》	本文档介绍了 MacroSAN MS 系列存储设备性能统计特性的配置方法。
《MacroSAN MS 系列存储设备 QoS 特性 图 形界面用户手册》	本文档介绍了 MacroSAN MS 系列存储设备 QoS 特性的配置方法。
《MacroSAN MS 系列存储设备 远程镜像特性 图形界面用户手册》	本文档介绍了 MacroSAN MS 系列存储设备远程镜像特性的配置方法。
《MacroSAN MS 系列存储设备 双活特性 图 形界面用户手册》	本文档介绍了 MacroSAN MS 系列存储设备双活特性的配置方法。
《MacroSAN MS 系列存储设备 自动精简配置 特性 图形界面用户手册》	本文档介绍了 MacroSAN MS 系列存储设备自动精简配置特性的配置方法。
《MacroSAN MS 系列存储设备 虚拟化特性 图形界面用户手册》	本文档介绍了 MacroSAN MS 系列存储设备虚拟化特性的配置方法。
《MacroSAN MS 系列存储设备 本地镜像特性 图形界面用户手册》	本文档介绍了 MacroSAN MS 系列存储设备本地镜像特性的配置方法。

《MacroSAN MS 系列存储设备 本地克隆特性 图形界面用户手册》	本文档介绍了 MacroSAN MS 系列存储设备本地克隆特性的配置方法。
《MacroSAN MS 系列存储设备 自动分层特性图形界面用户手册》	本文档介绍了 MacroSAN MS 系列存储设备自动分层特性的配置方法。
《MacroSAN MS 系列存储设备 NDM 特性 图形界面用户手册》	本文档介绍了 MacroSAN MS 系列存储设备 NDM 特性的配置方法。
《MacroSAN MS 系列存储设备 重删和压缩特性 图形界面用户手册》	本文档介绍了 MacroSAN MS 系列存储设备重删和压缩特性的 配置方法。
《MacroSAN MS 系列存储设备 VVol 特性 图形界面用户手册》	本文档介绍了 MacroSAN MS 系列存储设备 VVol 特性的配置方法。

1.3 资料约定

在资料中,使用一些醒目的标识显示需要您关注的内容,请您在操作的过程中特别注意。

1.3.1 资料描述约定

①说明

该部分文字表示提示信息,是对操作内容描述的补充说明。

丛注意

- 该部分文字表示重要信息,说明操作过程中需要注意的事项,不恰当的操作可能会导致事故发生,比如性能降低、数据丢失或设备损坏等。
- 如果该部分文字使用红色字体,表示强调,需要重点关注。

1.3.2 其他约定

在下面的描述中,"杭州宏杉科技股份有限公司"也简称为"MacroSAN"。

1.4 资料获取方式

可登录杭州宏杉科技股份有限公司官方网站 www.macrosan.com 获取最新的资料。

①说明

由于软件版本升级或其他原因,资料内容会不定期进行更新,资料内容可能滞后于最新的软件版本。

1.5 资料意见反馈方式

杭州宏杉科技股份有限公司非常感谢您选用我们的产品,您在阅读或使用资料过程中有任何意见或建议,请发电子邮件到 document@macrosan.com,感谢您的支持。

2 MS 系列存储设备概述

2.1 MS 系列存储设备简介

MacroSAN ODSP 存储设备采用最新芯片技术,创新性地设计出高性能和高可靠的硬件结构,配合 ODSP 系列软件,为云计算时代的数据中心海量并发应用提供了大缓存、高带宽、高处理能力的百 G 级存储平台,同时,还可为中小型数据中心提供安全可靠的、资源弹性部署的存储平台。

MacroSAN ODSP 存储设备由以下模块化组件构成:

- 主控柜(SPU):可插入存储控制器模块(SP)、电源模块、风扇模块、电池模块、磁盘模块等硬件组件。
- 磁盘柜(DSU):可插入磁盘柜控制器模块(EP)、电源模块、风扇模块、电池模块、磁盘模块等硬件组件。
- 交换柜(SSU):可插入交换柜控制器模块(XP)、电源模块、风扇模块、电池模块、磁盘模块等硬件组件。

SPU 的存储控制器模块是整个存储设备的核心模块,负责存储设备的数据收发、数据处理和数据保护。存储控制器模块提供多种类型的前端业务接口,用于连接前端的应用服务器,同时提供多个 SAS 接口或 PCIe 接口,用于连接 SSU 或 DSU 进行存储扩容。

①说明

- MacroSAN ODSP 存储设备的硬件特性请参考存储设备安装手册。
- 在下面的描述中,MacroSAN MS 系列存储设备简称 ODSP 存储设备、存储设备或设备。
- 存储设备包括主控柜(SPU)、磁盘柜(DSU)、交换柜(SSU),其中,交换柜是一种特殊的磁盘柜,在磁盘柜的基础上,还实现了SAS交换功能。DSU和SSU的管理功能类似,在下面的描述中,如果没有特殊说明,DSU和SSU统称为DSU,EP和XP统称为EP。

2.2 MS 系列存储设备典型组网介绍

MacroSAN MS 系列存储设备典型组网如图 2-1 所示。

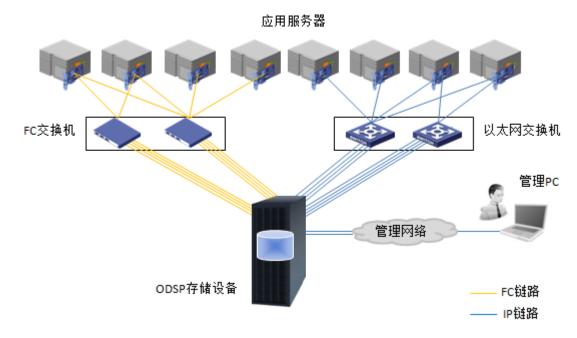


图2-1 MS 系列存储设备典型组网

组网说明:

- ODSP 存储设备的每个控制器均提供了专用管理端口,管理 PC 可以直接连接或通过管理网络连接到存储设备的管理端口,要求管理 PC 和所有控制器之间网络均可达。
- 对于 IP 网络,ODSP 存储设备支持端口聚合功能。前端业务接口可以单独使用,也可以把多个以太网端口捆绑成一个聚合端口使用。
- 如果应用服务器需要通过 iSCSI 协议访问 ODSP 存储设备,要求在应用服务器上安装千兆/万兆以太网卡以及 iSCSI Initiator 软件或安装专用的 iSCSI HBA 卡,如果应用服务器需要通过 FC 协议访问存储设备,要求在应用服务器上安装专用的 FC HBA 卡,并正确安装对应的驱动软件。

丛注意

- 如果应用服务器需要通过多路径访问 ODSP 存储设备,要求在应用服务器上正确安装多路径软件。
- 如果 ODSP 存储设备的客户端是多服务器应用系统,并且要求多台应用服务器对同一存储资源 具有读写权限,必须在对应的应用服务器上正确安装相关软件(比如集群软件、并行文件系统 软件等),以实现多台应用服务器互斥访问同一存储区域,从而保证数据的准确性和一致性。

3 ODSP Scope+控制台

3.1 ODSP Scope+简介

ODSP Scope+通常也称为 GUI 控制台,简称 GUI,提供基于 Web 的管理界面,在浏览器的地址栏中输入 ODSP 存储设备的 IP 地址,即可运行 ODSP Scope+,管理 ODSP 存储设备。

目前已完成兼容性测试的浏览器包括:

- chrome55+。
- firefox39.0+。
- IE10+以及基于 IE 内核的浏览器。
- 360 浏览器(选择极速模式)。
- QQ 浏览器(选择极速模式)。
- 世界之窗浏览器(选择极速模式)。
- 遨游浏览器(IE10+以上内核)。

①说明

ODSP Scope+兼容的浏览器会不定期进行更新,请咨询厂商技术支持人员获取最新的已完成兼容性测试的浏览器列表。

3.2 运行 ODSP Scope+

在管理 PC 中打开浏览器,在地址栏中输入存储设备任一控制器管理网口的 IP 地址(例如: https://172.17.243.81/)并刷新界面,即可运行 ODSP Scope+。

部分浏览器中可能会显示安全证书风险(示例如图 3-1 所示),此时请单击"继续浏览此网站(不推荐)。"或者类似含义的条目继续运行 ODSP Scope+。

①说明

出于安全考虑,ODSP Scope+基于 HTTPS 协议实现管理功能,但是所有的安全证书均是针对域名的真实性的第三方认证,必须由可信任的 CA 机构进行签发,存储设备的位置是在服务器后面,位于专用私有网络中,通常不接入公网,且通过局域网 IP 地址进行管理,而不是通过域名,所以 SSL证书无法正常申请。浏览器中提示安全证书风险是正常现象,请忽略该提示。

图3-1 证书异常提示界面示例

ODSP Scope+登录界面如图 3-2 所示,默认采用本地用户登录,单击"高级"还可选择采用 LDAP 用户登录,输入用户名和密码,点击<登录>按钮登录存储设备。

图3-2 ODSP Scope+登录界面

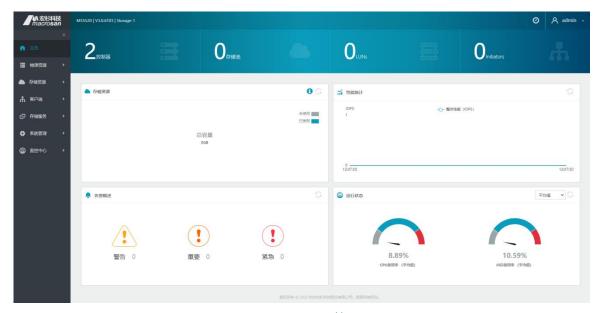


图3-3 ODSP Scope+首页

3.3 ODSP Scope+界面组成

3.3.1 界面概述

ODSP Scope+界面中将展示存储设备的所有信息,典型界面如图 3-4 所示,可划分为 5 个分区,分别对应导航树、导航栏、信息显示区、扩展区和版权显示区。

图3-4 ODSP Scope+典型界面示例

3.3.2 导航树

导航树如图 3-5 所示,采用树状视图,以节点的方式展示存储设备的管理主节点,包括主页、物理资源、存储资源、客户端、存储服务、系统管理、监控中心等,单击任一主节点则可展开该主节点所属的子节点,单击任一子节点后可以对该子节点进行管理。

图3-5 ODSP Scope+导航树示例

3.3.3 导航栏

导航栏如图 3-6 所示,主要显示五部分信息:

- 设备信息:显示设备的产品型号、版本号和名称。
- 时间信息:单击时间图标可打开修改设备时间窗口修改设备时间。

关注事项

- 关注事项信息:显示设备关注事项的摘要信息,单击事项图标可展开浮动窗口查看具体的关注事项,如图 3-7 所示。
- 告警信息:显示设备当前告警的摘要信息,单击告警图标可展开浮动窗口查看具体的告警项, 如图 3-8 所示。
- 登录信息:显示当前 Web 界面的登录用户,单击用户图标后可执行修改登录超时时间、修改 密码、注销登录会话等操作。

图3-6 ODSP Scope+导航栏示例

图3-8 ODSP Scope+告警项示例

3.3.4 信息显示区

信息显示区如图 3-9 所示,采用多页签的方式,通过表格直观地显示当前选中的导航树节点的详细信息。

图3-9 ODSP Scope+信息显示区示例

在 ODSP Scope+信息显示区中:

- 如果存在多页签,可单击不同的页签查看不同的表格。
- 表格中选中任一行后,按钮中将显示支持的操作,可根据实际需求单击对应按钮进行配置。 如果需要在表格中选中多行,可以使用 shift 连选功能。
- 可通过查找功能快速查找资源,具有相关性的多个对象,比如主机组成员、一致性组成员等, 建议在创建对象时让这些对象名称中包含相同的前缀,以方便在操作时快速检索,提高易用 性。
- 可通过行设置、列设置调整表格的显示,还可通过导出按钮直接导出表格数据。

3.3.5 扩展区

扩展区显示导航树中选中节点或者表格中选中行的扩展信息,选中项目不同,扩展区内容也不同。

3.3.6 版权显示区

版权显示区显示 ODSP Scope+的版权信息。

第二部分:性能统计特性

4 性能统计特性简介

4.1 性能统计简介

性能统计是存储设备的高级特性之一,通过性能统计特性可以监控存储设备的性能,为业务扩容、业务调整、资源迁移等决策提供有效的数据支撑。

4.2 实时性能统计说明

实时性能统计是指在线查看所选对象的实时性能数据,在实时性能统计界面中将按照曲线图的方式显示性能数据。用户可同时添加一个或多个对象的实时性能统计,实时观测同一个对象不同维度的性能数据或不同对象的性能数据。

4.3 历史性能数据说明

支持历史性能统计,可针对设备、控制器、磁盘、RAID、LUN、端口、主机、Initiator等对象类型 启用自动性能统计功能,存储设备将自动统计并记录相关对象的性能数据。当需要查看历史性能数 据时,可灵活选择需要查看的对象以及查看哪些维度的性能数据。

4.4 性能预测说明

在启用 Host 和设备的自动性能统计并间隔 1 小时后,可使用性能模拟功能。当设备的历史性能数据超过两周时,支持预测未来一周设备的性能;当设备的历史性能数据超过两月时,支持预测未来一月设备的性能。

5 配置性能统计

5.1 配置性能统计前准备

5.1.1 激活性能统计 License

在导航树上选择"系统管理"->"系统设置",打开系统设置界面,单击<License 管理>按钮,打开 License 管理窗口,输入有效的性能统计 License,单击<激活>按钮激活 License。激活成功后,将在导航树上显示"性能统计"节点。

5.1.2 启用/禁用历史性能统计(可选)

△注意

对于 MS2500G2 系列存储设备:

- 如果需要使用历史性能统计,需要先启用历史性能统计功能。启用历史性能统计功能时,系统 将在用户 RAID 上自动创建 Performance-SYS-LUN,用于保存性能统计文件。
- 如果不再需要使用历史性能统计,可禁用历史性能统计功能,禁用时,系统将自动删除所有性能统计文件以及 Performance-SYS-LUN。

1. 启用历史性能统计

步骤 1: 在导航树上选择"性能统计"->"历史性能数据",打开历史性能数据界面,在信息显示区的历史性能数据页签中单击<更多>按钮,在下拉菜单中单击<启用历史性能统计>按钮,打开启用历史性能统计向导。

步骤 2: 启用历史性能统计向导第一步如图 5-1 所示,选择待创建的 Performance-SYS-LUN 所属存储池,单击<下一步>按钮进入下一步界面。

图5-1 启用历史性能统计向导界面(一)

步骤 3: 启用历史性能统计向导第二步如图 5-2 所示,选择待创建的 Performance-SYS-LUN 所属 RAID,单击<下一步>按钮进入下一步界面。

图5-2 启用历史性能统计向导界面(二)

步骤 4: 在启用历史性能统计向导第三步中可核对配置信息,单击<完成>按钮完成配置。

2. 禁用历史性能统计

①说明

存在未完成的性能统计任务时,不能禁用历史性能统计功能。

在导航树上选择"性能统计"->"历史性能数据",打开历史性能数据界面,在信息显示区的历史性能数据页签中单击<更多>按钮,在下拉菜单中单击<禁用历史性能统计>按钮禁用性能统计任务。

5.2 管理实时性能统计

5.2.1 查看实时性能统计

在导航树上选择"性能统计"->"实时性能统计",打开实时性能统计界面,在信息显示区的实时性能统计页签中可查看实时性能统计。

5.2.2 添加实时性能统计

在导航树上选择"性能统计"->"实时性能统计",打开实时性能统计界面,在信息显示区的实时性能统计页签中单击<添加>按钮,打开添加实时性能统计窗口,如图 5-3 所示,设置统计参数(详见表 5-1),单击<确定>按钮添加实时性能统计。

图5-3 添加实时性能统计界面

表5-1 实时统计参数说明

配置项参数	说明
对象类型	指需要统计的对象类型,包括设备、CPU、内存、磁盘、RAID、LUN、Host、iSCSI Initiator、FC Initiator、RDMA Initiator、FC 端口、iSCSI 端口、RDMA端口、SAS端口、PCIe 端口、视图等。
数据类型	指需要统计的数据类型,包括 IOPS、吞吐量、平均延时、最大延时、块大小、缓存命中率、缓存使用率等。
读写类型	指需要统计的 IO 类型,包括读、写、读+写等。
控制器	指需要统计的控制器,可勾选所有 SP、SP1、SP2 等。

5.2.3 设置采样间隔

在导航树上选择"性能统计"->"实时性能统计",打开实时性能统计界面,在信息显示区的实时性能统计页签中单击<设置>按钮,打开设置采样间隔窗口,如图 5-4所示,输入实时统计采样间隔,单击<确定>按钮设置采样间隔。

图5-4 设置采样间隔界面

5.3 管理历史性能数据

5.3.1 查看历史性能数据

在导航树上选择"性能统计"->"历史性能数据",打开历史性能数据界面,在信息显示区的历史性能数据页签中单击<查看>按钮,打开选择查看的统计对象窗口,如图 5-5 所示,选择统计对象类型和时间段,勾选统计对象名称,单击<确定>按钮查看历史性能数据。

图5-5 选择查看的统计对象界面

5.3.2 导出历史性能数据

在导航树上选择"性能统计"->"历史性能数据",打开历史性能数据界面,在信息显示区的历史性能数据页签中单击<导出>按钮,打开选择导出的统计对象窗口,如图 5-6 所示,选择需要导出的统计对象类型和时间段,勾选统计对象名称,单击<确定>按钮导出历史性能数据。

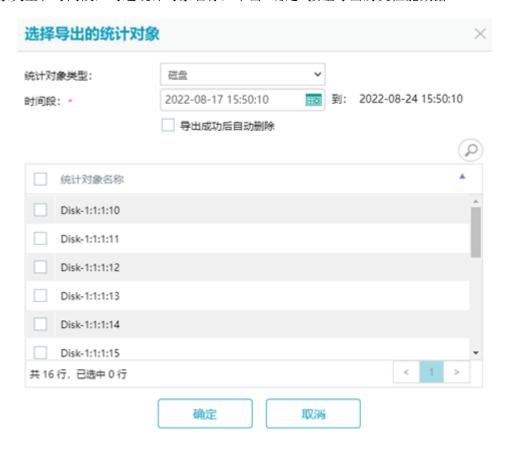


图5-6 选择导出的统计对象界面

5.3.3 删除历史性能数据

在导航树上选择"性能统计"->"历史性能数据",打开历史性能数据界面,在信息显示区的历史性能数据页签中选中需要删除的统计对象类型,单击<更多>按钮,在下拉菜单中单击<删除>按钮删除该统计对象的历史性能数据。

5.3.4 清空历史性能数据

在导航树上选择"性能统计"->"历史性能数据",打开历史性能数据界面,在信息显示区的历史性能数据页签中单击<更多>按钮,在下拉菜单中单击<清空>按钮,打开清空历史性能数据窗口,如图 5-7 所示,选中统计对象类型,单击<确定>按钮清空该统计对象的历史性能数据。

图5-7 清空历史性能数据界面

5.3.5 设置自动性能统计

在导航树上选择"性能统计"->"历史性能数据",打开历史性能数据界面,在信息显示区的历史性能数据页签中单击<更多>按钮,在下拉菜单中单击<设置自动性能统计>按钮,打开设置自动性能统计窗口,如图 5-8 所示,选中需要启用或禁用的统计对象类型,单击<启用>或<禁用>按钮设置自动性能统计。

图5-8 设置自动性能统计界面

5.4 管理性能预测

5.4.1 启用性能预测

在导航树上选择"性能统计"->"性能预测",打开性能预测界面,在信息显示区的性能预测页签中单击<性能预测>按钮,展开启用性能预测界面,如图 5-9 所示,选择需要预测的设备、SP、以及时间,单击<确定>按钮完成配置。

图5-9 性能预测界面

5.4.2 启用性能模拟

在导航树上选择"性能统计"->"性能预测",打开性能预测界面,在信息显示区的性能预测页签中单击<性能模拟>按钮,打开性能模拟窗口,如图 5-10 所示,输入预计新增台数,单击<性能模拟>按钮可预测应用增加后的存储性能。

①说明

当前 IOPS 指设备最近一小时内读+写 IOPS 平均值;预计 IOPS 指新增指定台数的主机后,设备读+写 IOPS 预计值。

图5-10 性能模拟界面

5.5 管理功耗

5.5.1 查看支持查看功耗的 DSU

在导航树上选择"性能统计"->"功耗",打开功耗界面,将鼠标放在左上角的 ① 图标上,可在 悬浮窗口查看支持查看功耗的 DSU。

5.5.2 查看设备功耗

在导航树上选择"性能统计"->"功耗",打开功耗界面,单击<查看>按钮,打开选择时间段窗口,如图 5-11 所示,输入相关参数,单击<确定>按钮可查看选中时间段设备的功耗。

图5-11 选择时间段界面

附录A. 设备默认配置

设备的默认配置如表 5-2 所示。

表5-2 设备默认配置

项目	默认值
设备名称	Storage-1
SP1 管理网口 IP 地址	192.168.0.210
SP2 管理网口 IP 地址	192.168.0.220
SP3 管理网口 IP 地址	192.168.0.230
SP4 管理网口 IP 地址	192.168.0.240
管理员	admin
密码	admin

附录B. 术语

Α

Active-Backup 一种端口聚合端口模式,成员端口间流量模型为主备模式。

磁盘突然断电可能导致磁头划伤盘面,从而引发磁盘介质错误,因此利用软件先将磁 安全拔盘

盘正常停转并下电,然后再提示用户手动拔盘,从而达到保护磁盘的目的。

В

Balance-RR 一种端口聚合端口模式,成员端口间流量模型为负载均衡模式。

被虚拟化设备 即外部设备,也称为后端存储设备,指其资源被分配给虚拟化设备统一管理存储设备。

С

CLI 存储设备的管理界面之一,通过命令行界面对设备进行管理。

存储池 存储池,也称为 Pool,即资源分区,一个存储池中包含一组磁盘、一组 RAID 和一组

LUN,数据可以按照 Cell 为单位在存储池内部流动,以实现存储资源的动态分配和管

理。

D

对称双活存储系统 对称双活存储系统,也称为 SDAS 系统。为了处理因天灾或软硬件故障等导致业务中

> 断问题,在存储设备中为某个特定的 LUN 创建一个可读写的副本,当其中一个 LUN 发生灾难时,可以将业务快速切换到副本 LUN 上,从而达到"数据保护"和保证"业

务的连续性"的双重目的。

双活-反转 指反转双活 LUN 中两个 LUN 的镜像角色。

双活-镜像角色 指 LUN 是双活 LUN 中主 LUN 还是镜像 LUN。

双活 LUN 由两个 LUN 组成, 分别是主 LUN 和镜像 LUN。

双活-同步 当两个 LUN 中数据存在差异时,从主 LUN 同步数据到镜像 LUN 的过程。

LUN

双活-主 LUN 和镜像 指双活 LUN 中两个 LUN, 当两个 LUN 中数据存在差异时, 总是从主 LUN 同步到镜像

LUN.

DSU 磁盘柜单元,通常称为磁盘柜,可安装磁盘柜控制器模块(EP)、磁盘模块、风扇模

块等,通过 SAS 线缆可连接主控柜(SPU)、交换柜(SSU)、上一级磁盘柜(DSU)

或下一级磁盘柜(DSU),实现存储设备扩容功能。

Ε

ΕP 扩展处理器,通常称为磁盘柜控制器,可安装到磁盘柜(DSU)中,实现存储设备后

端数据处理和分发。

F

指 FC 端口的用途,包括 Initiator 模式、Target 模式,默认是 Target 模式。 FC 端口使用模式

指设置为 Initiator 模式的 FC 端口。 FC 适配器

复制,也称为 Replication,是常用的数据保护方式之一。配置复制关系后,复制指复 复制

制源设备发起,把主资源中上一次复制之后变化的数据复制到副本资源的过程。

复制-本地复制和远程复

制

本地复制指本设备内复制,即复制主资源和副本资源均在本设备内。远程复制则指不 同的设备间复制,即复制主资源和副本资源位于不同的设备上,远程复制的复制链路

通常跨广域网。

复制策略 指用户为配置的时间策略,当时间策略满足时,复制源设备自动触发复制。

复制-初始复制 复制主资源和副本资源之间的首次复制过程。

量选项

复制-初始复制前扫描差 在开始初始复制前是否先执行扫描操作,如果选择是,将自动开始扫描,获取主资源 和副本资源的差量数据,初始复制时仅复制差量数据,从而减少复制的数据量。如果

选择否,初始复制时将做全盘复制,即复制主资源中所有数据。

复制对 指复制主资源和副本资源。

略

复制-挂起或激活复制策 针对复制对,可手动挂起或激活复制策略。挂起复制策略后,下一次策略满足时,将

不会开始复制,直到策略被再次激活后,策略才会重新生效。挂起操作不影响当前正

在进行的复制。

复制入和复制出 指复制方向,在一个复制对中,对于主资源而言是复制出,对于副本资源而言是复制

针对复制对,通过扫描操作,可以获取主资源和副本资源的差量数据,下一次复制时 复制-扫描

仅复制差量数据,从而减少复制的数据量。

复制-提升 指禁用复制关系,并把副本资源提升成一个普通的 LUN 使用。

复制-源设备和目标设备 源设备指主资源所属存储设备,目标设备指副本资源所属存储设备。源设备和目标设

备是相对复制对而言的,两台设备上可以同时存在多个复制对,复制方向可以相同,

也可以不同。

复制-主资源和副本资源 主资源指生产中心的生产数据卷,副本资源指灾备中心的数据副本,触发复制时,总

是从主资源复制到副本资源。

Fabric 一种网络拓扑结构,节点通过互连开关将数据传递给彼此,如 InfiniBand、Ethernet

(RoCE、iWARP)、FC等,都是Fabric,本文Fabrics是指基于RDMA的标准。

G

管理端口 设计时, 预留用于管理用途的网口。

指用于运行 ODSP Scope 的笔记本、PC 机或服务器等。 管理 PC

GUI 存储设备的管理界面之一,通过文字和图形的方式对设备进行管理。

Н

HA 存储设备支持双/四控制器,每个控制器均默认按照 Active 模式运行,同时对外提供业

务; 当任意一个控制器故障时,其他控制器将自动接管故障控制器的业务,从而保证业务的连续性;当故障控制器恢复正常时,将重新加载其原有业务,使得每个控制器

重新恢复到 Active 模式运行。

HA-恢复 也称为 Recover, 当故障控制器恢复正常时, 重新加载其原有业务的过程。

HA-接管 也称为 Takeover, 当存储设备中一个控制器故障时, 另一个控制器自动接管故障控制

器的业务的过程。

HotCache 存储设备重要的性能优化方式之一,基于 SSD 高速访问特性,把 SSD 作为存储设备

的二级缓存使用,从而提升存储设备的整体读性能。

HotCache-LUN 基于 HotCache-RAID 创建的、由 HotCache 功能专用的 LUN。

HotCache-Pool HotCache-RAID 和 HotCache-LUN 所属存储池。

HotCache-RAID 使用 SSD 创建的、由 HotCache 功能专用的 RAID。

留在高速物理内存中,以提高存储的读写性能,同时,提前判断热点并把对应的数据

预读到高速物理内存中,进一步提高存储的读性能。

缓存-冻结缓存 指缓存中脏数据因为 RAID 故障等原因无法成功下刷到磁盘,暂时保存在缓存中。

缓存-动态分配 表示系统根据当前统计周期内每个 LUN 上的流量动态调整每个 LUN 占用的缓存空间,

使系统缓存整体利用率达到最佳。

缓存-固定分配 表示系统根据设置的百分比为 LUN 分配缓存空间。

缓存-预读 针对读缓存,通过预读功能可提前判断热点,并把对应的数据从磁盘中预读到读缓存

中,进一步提高存储的读性能,适用于流量模型是顺序读的场合。

缓存-脏数据 指驻留在写缓存中的,还未下刷到磁盘中的数据。

ı

Initiator 即启动器,是 SCSI 协议中命令和请求的发起端,通常指应用服务器端。

iSCSI 是一种基于以太网进行高速数据传输的标准网络协议。

iSCSI-CHAP 认证 询问握手认证协议,是一种基于密码的询问响应身份认证协议。

iSCSI-单向 CHAP 认证 即 Target 端认证 Initiator。在存储设备上可启用 Initiator 的 CHAP 认证,并设置用户

名和密码;应用服务器上使用该 Initiator 连接存储设备时,输入该用户名和密码;存储设备检查 iSCSI 连接请求中携带的认证信息是否和在存储设备中预设的认证信息一致,

如果一致,可以建立连接,如果不一致,建立连接失败。

iSCSI-双向 CHAP 认证 即 Initiator 和 Target 相互认证,在单向 CHAP 认证的基础上,为 iSCSI Target 启用双

向 CHAP 认证。在应用服务器上对 Initiator 设置专用的 CHAP 认证用户名和密码;在存储设备上为 iSCSI Target 启用双向 CHAP 认证,并输入该用户名和密码;当应用服务器发起 iSCSI 连接请求时,判断存储设备返回的 CHAP 认证信息是否和 Initiator 预

设的认证信息一致,如果一致,可以建立连接,如果不一致,建立连接失败。

J

卷 指后端存储设备上创建一个 LUN, 分配给虚拟化设备后, 虚拟化设备识别为一个卷。

卷联机状态 由用户操作决定的卷的联机状态。

卷所属控制器 指虑拟化设备的哪些控制器可以访问卷,由路径状态决定。

卷在线状态 指虚拟化设备是否可访问卷,由路径状态决定。

Κ

快照,也称为 Snapshot,是常用的数据保护方式之一。配置快照后,可以创建多个时

间点,为生产数据卷提供"软灾难"保护。

快照策略 指用户配置的时间策略,当时间策略满足时,设备将自动创建快照时间点。

快照回滚 通常简称回滚,在发生"软灾难"时,如果数据被破坏,可以通过回滚操作恢复前端

业务对应的 LUN 或视图的数据,尝试恢复业务。支持时间点回滚、视图回滚和 LUN

回滚。

快照时间点 通常简称时间点。通过快照技术,保存 LUN 历史时间平面的数据,一个时间点对应一

个时间平面。

快照视图 通过创建快照视图,可读出视图关联的时间点对应的时间平面的数据。同时视图也支

持启用快照、创建时间点和视图功能。

快照资源 依附于 LUN,用于保存 LUN 上快照时间点的数据。

快照资源自动扩容 指快照资源使用率达到某一阈值时,将触发快照资源自动扩容,防止快照资源满导致

快照资源无效。

快照资源数据有效性 表示一种逻辑状态,表示快照资源中数据是否可用,包括有效和无效两种状态。

L

LUN 指客户端服务器可以访问的逻辑存储空间。

LUN-所属控制器 针对 LUN 而言,默认所属由用户设定,指将所创建的 LUN 指定到某个控制器上。当

HA 发生切换时,会自动切换到对端控制器上进行管理,当前所属发生变化;当 HA 状

态恢复正常时,会自动切回到本端控制器进行管理。

Ν

NDM Non-interrupt Data Migration,无中断数据迁移。

NVMe 非易失性内存主机控制器接口规范(Non-Volatile Memory express), 是一个逻辑设备接

口规范。NVMe 协议通过 PCIe 总线访问非易失性存储介质,极大提高存储性能。

NVMf NVMe over fabrics, 以 NVMe 协议为基础,利用 RDMA 或者光线通道架构等 Fabric

访问 NVMe 的技术。

0

ODSP 是杭州宏杉科技股份有限公司自主研发的存储专用软件管理平台,适用于 MacroSAN

全系列存储设备,为存储设备提供高级别的数据安全性和业务连续性、灵活的可扩展

性、开放的可定制性以及丰富的存储特性。

具,采用 CS 架构,提供基于 Java 的管理界面。

ODSP Scope+ ODSP Scope 的升级版,采用 BS 架构,提供基于 Web 的管理界面,

使得管理员对整个系统的管理变得更简单。

Q

前端应用服务器 指使用存储设备提供的存储空间的服务器。

R

RAID 是一种把多块独立的物理磁盘按不同的方式组合起来形成一个磁盘组,从而提供比单

个磁盘更高的存储性能,并提供数据冗余性的保护机制。

RAID 级别 指不同的数据组织方式,常用的 RAID 级别包括 RAID0、RAID1、RAID5、RAID6、

RAID10、RAIDx-3等。

RAID 重建 指冗余 RAID 降级后,使用热备盘重建,恢复 RAID 冗余性的过程。

RAID-非冗余 非冗余是指 RAID 中数据无冗余保护,此时 RAID 中一块成员磁盘故障或被拔出,将导

致 RAID 中部分数据或全部数据不可访问。

RAID-冗余 冗余是指 RAID 中数据有冗余保护,此时 RAID 中一块成员磁盘故障或被拔出,不会影

响 RAID 中数据可用性。

RDV 初始化方式 把后端存储设备上的卷直接提供给前端应用服务器使用,保留原有数据。

RDV-LUN 指基于 RDV 方式初始化的卷创建的 LUN,可提供给前端应用服务器直接访问。

热备盘 指可用于冗余 RAID 降级之后重建的磁盘。

热备盘-空白热备盘 启用空白磁盘热备的情况下,RAID需要重建时,如果没有专用热备盘或可用的全局热

备盘,将使用存储设备中满足要求的空白盘进行重建,无需手动设置该磁盘为热备盘,

大大简化存储管理员的操作。

热备盘-全局热备盘 全局热备盘可以被系统中的所有 RAID 使用,前提是全局热备盘类型和容量满足需要重

建的 RAID 的要求。

热备盘-专用热备盘 专用热备盘只能被所属 RAID 使用。

S

SNSD 功能配合交换机的 iNoF 功能,可实现 NVMf 环境中即插即用和故障快速感知功

能, 进而实现路径故障时秒级切换, 提高了存储系统的可靠性。

SP 存储处理器,通常称为存储控制器,可安装主控柜(SPU)中,实现存储设备数据收

发、处理和保护。

SPU 存储控制器单元,通常称为主控柜,可安装存储控制器模块、电源模块、风扇模块、

电池模块等,通过前端网络连接客户端服务器,通过 SAS 网络连接磁盘柜(DSU)或

交换柜(SSU),实现数据读写和数据保护等功能。

SSU 交换柜单元,是一种特殊的磁盘柜,通常称为交换柜,可安装交换柜控制器模块(XP)、

风扇模块、电池模块、磁盘模块等,通过 SAS 线缆可连接主控柜(SPU),实现 SAS

交换、存储设备扩容等功能。

数据缩减 指减少数据存储空间的技术,本文档中指数据重删和数据压缩两种特性。

数据缩减-重删 重复数据删除,一种通过删除存储系统中的冗余数据块,减少数据占用的物理存储容

量的数据缩减技术。

数据缩减-压缩 数据压缩,一种通过特定算法对数据重新编码,减少存储空间的数据缩减技术。

数据缩减-DDSR 数据副本共享资源,用来保存所有缩减 LUN 的数据和重删元数据。

数据缩减-缩减率 指用户写入数据量和实际写入磁盘的数据量的比值。

缩减 LUN 指启用重删和/或压缩功能 LUN,包括重删 LUN、压缩 LUN 和重删压缩 LUN。

Т

Target 即目标器,是 SCSI 协议中命令和请求的接收端,通常指存储设备端。

Thick-LUN 普通 LUN,指禁用自动精简配置功能的 LUN。

Thin-LUN 指启用自动精简配置功能的 LUN。

Thin-LUN Extent 粒度,指 Thin-LUN 管理空间的最小单位。粒度越小,空间利用率越高。

Thin-LUN 逻辑容量 指客户端服务器看到的 Thin-LUN 大小。

Thin-LUN 数据区存放 Thin-LUN 用户数据。Thin-LUN 私有区存放 Thin-LUN 管理数据。

Thin-LUN 物理容量 指实际分配给 Thin-LUN 的物理空间大小。

Χ

XP 交换处理器,通常称为交换柜控制器,可安装到交换柜(SSU)中,实现存储设备后

端数据处理和分发。

虚拟化设备 指提供虚拟化功能的存储设备,其统一管理被虚拟化设备提供的存储空间。

W

网关 指网络中,作为到另一个网络的入口节点。

网口聚合 指把 2 个或 2 个以上物理网口绑定成一个聚合端口,其中任意成员网口断开连接不影

响业务连续性。

Z

自动精简配置

即 Thin Provisioning,是一种新的存储管理特性,核心原理是"欺骗"操作系统,让操作系统认为有很大的存储空间,而实际上的物理存储空间则没有那么大;随着应用程序写入越来越多的数据,存储系统将在后台自动扩容物理存储空间,自动实现了按需分配,使得物理存储空间利用率更高,节省了用户的投资。

附录C. 缩略语

Α

ATA Advanced Technology Attachment 高级附加装置

С

CHAP Challenge Handshake Authentication Protocol 挑战握手认证协议

CLI Command-Line Interface 命令行界面

COW Copy on Write 写拷贝

CRAID RAID based Cell 基于 Cell 的 RAID

D

DDSR Data Duplicate Shared Resource
 数据副本共享资源

DSU Disk Shelf Unit 磁盘柜单元

Ε

EP Expander Processor 扩展处理器

F

FC Fiber Channel 光纤通道

G

GE Gigabit Ethernet 千兆以太网

GUI Graphical User Interface 图形用户界面

Н

HA High Availability 高可用性

I

IE Internet Explorer 因特网浏览器

iNoF Intelligent Lossless NVMe over Fabrics 智能无损 NVMe 网络

IP Internet Protocol 因特网协议

iSCSI Internet Small Computer Systems Interface 因特网小型计算机系统接口

J

JRE Java Runtime Environment Java 程序运行环境

L

 LUN
 Logical Unit Number
 逻辑单元号

Ν

NDM Non-interrupt Data Migration 无中断数据迁移

NGUID Namespace Globally Unique Identifier 命名空间全局唯一标识符

NVMe Non-Volatile Memory Express 非易失性内存主机控制器接口规范

NVMf NVMe over Fabrics 基于网络的 NVMe

0

ODSP Open Data Storage Platform 开放数据存储平台

Q

QoS Quality of Service 服务质量

R

RAID Redundant Array of Independent Disks 独立磁盘冗余阵列

RDV Reserved Data Virtualize 虚拟化数据保留

ROW Redirect on Write 写重定向

S

SAN Storage Area Network 存储区域网络

SAS Serial Attached SCSI 串行连接 SCSI

SATA Serial ATA 串行 ATA

SCSI Small Computer System Interface 小型计算机系统接口

SDAS Symmetrical Dual Active Storage 对称双活存储

SMI-S Storage Management Initiative Specification 存储管理标准

SMTP Simple Mail Transfer Protocol 简单邮件传送协议

SNMP Simple Network Management Protocol 简单网络管理协议

SNSD Storage Network Smart Discovery 存储网络智能发现

 SP
 Storage Processor
 存储处理器

SPU Storage Processor Unit 存储控制器单元

SSD Solid State Drive 固态硬盘

SSU Storage Switch Unit 交换柜单元

W

WWN World Wide Name/World Wide Name 全球唯一标识/全局名称

X

XAN eXchange Area Network 交换区域网

XP Exchange Processor 交换处理器